Significance and Use

American National Standards Institute Inc.

5.1 The efficiency and fuel economy of spark ignition and diesel engines is affected in part by the friction between moving parts. Although no reliable, in situ friction measurements exist for fired internal combustion engines, it has been estimated that at least half of the friction losses in such engines are due to those at the ring and liner interface. This test method involves the use of a reciprocating sliding arrangement to simulate the type of oscillating contact that occurs between a piston ring and its mating cylinder bore surface near the top-dead-center position in the cylinder where most severe surface contact conditions occur. There are many types of engines and engine operating environments; therefore, to allow the user the flexibility to tailor this test to conditions representative of various engines, this standard test method allows flexibility in selecting test loads, speeds, lubricants, and durations of testing. Variables that can be adjusted in this procedure include: normal force, speed of oscillation, stroke length, duration of testing, temperature of testing, method of specimen surface preparation, and the materials and lubricants to be evaluated. Guidance is provided here on the set-up of the test, the manner of specimen fixturing and alignment, the selection of a lubricant to simulate conditioned oil characteristics (for a diesel engine), and the means to run-in the ring specimens to minimize variability in test results.

5.2 Engine oil spends the majority of its operating lifetime in a state that is representative of use-conditioned oil. That is, fresh oil is changed by exposure to the heat, chemical environment, and confinement in lubricated contact. It ages, changing viscosity, atomic weight, solids content, acidity, and chemistry. Conducting piston ring and cylinder liner material evaluations in fresh, non-conditioned oil is therefore unrealistic for material screening. But additive-depleted, used oil can result in high wear and corrosive attack of engine parts. The current test is intended for use with lubricants that simulate tribological behavior after in-service oil conditioning, but preceding the point of severe engine damage.

Scope

1.1 This test method covers procedures for conducting laboratory bench-scale friction tests of materials, coatings, and surface treatments intended for use in piston rings and cylinder liners in diesel or spark-ignition engines. The goal of this procedure is to provide a means for preliminary, cost-effective screening or evaluation of candidate ring and liner materials. A reciprocating sliding arrangement is used to simulate the contact that occurs between a piston ring and its mating liner near the top-dead-center position in the cylinder where liquid lubrication is least effective, and most wear is known to occur. Special attention is paid to specimen alignment, running-in, and lubricant condition.

1.2 This test method does not purport to simulate all aspects of a fired engine’s operating environment, but is intended to serve as a means for preliminary screening for assessing the frictional characteristics of candidate piston ring and liner material combinations in the presence of fluids that behave as use-conditioned engine oils. Therefore, it is beyond the scope of this test method to describe how one might establish correlations between the described test results and the frictional characteristics of rings and cylinder bore materials for specific engine designs or operating conditions.

1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Go to ASTM G181 at ASTM.org

Add your thoughts about the standard.

1375 - Demolition Materials (549) 1377 - Cartridge and Propellant Actuated Devices and Components (524) 4720 - Hose and Flexible Tubing (552) 4730 - Hose, Pipe, Tube, Lubrication, and Railing Fittings (1823) 5120 - Hand Tools, Nonedged, Nonpowered (1124) 5305 - Screws (781) 5306 - Bolts (996) 5310 - Nuts and Washers (864) 5330 - Packing and Gasket Materials (583) 5340 - Hardware, Commercial (953) 5905 - Resistor (753) 5910 - Capacitors (783) 5930 - Switches (1012) 5935 - Connectors, Electrical (4357) 5940 - Lugs, Terminals, and Terminal Strips (564) 5945 - Relays and Solenoids (733) 5950 - Coils and Transformers (856) 5960 - Electron Tubes and Associated Hardware (1630) 5961 - Semiconductor Devices and Associated Hardware (707) 6145 - Wire and Cable, Electrical (1629) 6240 - Electric Lamps (662) 6505 - Drugs and Biologicals (1343) 6515 - Medical and Surgical Instruments, Equipment, and Supplies (1907) 6520 - Dental Instruments, Equipment, and Supplies (790) 6530 - Hospital Furniture, Equipment, Utensils, and Supplies (745) 6610 - Flight Instruments (540) 6625 - Electrical and Electronic Properties Measuring and Testing Instruments (1241) 6640 - Laboratory Equipment and Supplies (1187) 6810 - Chemicals (1114) 8010 - Paints, Dopes, Varnishes, and Related Products (2046) 8030 - Preservative and Sealing Compounds (554) 8140 - Ammunition and Nuclear Ordnance Boxes, Packages and Special Containers (797) 8305 - Textile Fabrics (910) 8415 - Clothing, Special Purpose (660) 8455 - Badges and Insignia (3093) 8915 - Fruits and Vegetables (531) 9330 - Plastics Fabricated Materials (759) FACR (1647) ISDA (1776) ISDD (786) ISDF (1827) ISDN (581) MISC (1045) PACK (539) SESS (581)
Aerospace Material (225) Aircraft Air Conditioning, Heating, and Pressurizing Equipment (334) Aircraft Hydraulic, Vacuum, and De-icing System Components (263) Ammunition, 75mm through 125mm (192) Ammunition, over 30mm up to 75mm (208) Ammunition, through 30mm (349) Analytical Chemistry (180) Bombs (192) Building (414) Bulk Explosives (261) Cartridge and Propellant Actuated Devices and Components (524) Consumer Product Evaluation (267) Copper (192) Demolition Materials (549) Electrical and Magnetic Conductor (162) Electronics (153) Environmental Toxicology (187) Fire Control Computing Sights and Devices (338) Fire Control Radar Equipment, except Airborne (197) Fuzes and Primers (454) Geotechnical Engineering (217) GUN (640) Land Mines (276) Medical Device and Implant (427) Military Chemical Agents (156) Miscellaneous Aircraft Accessories and Components (231) Miscellaneous Fire Control Equipment (216) Nondestructive Testing (246) Nonferrous Metal and Nonferrous Alloy (367) Nuclear Technology (274) Optical Sighting and Ranging Equipment (451) Paint and Related Coating (456) Parachutes; Aerial Pick Up, Delivery, Recovery Systems; and Cargo Tie Down Equipment (324) Petroleum (378) Plastic Pipe (248) Pyrotechnics (175) Road and Paving (177) Rockets, Rocket Ammunition and Rocket Components (368) Rubber (166) Security System Pedestrian and Walkway Safety (157) Specialized Test and Handling Equipment, Nuclear Ordnance (150) Sports and Recreation (316) Steel (908) Torpedos and Components, Inert (258) (621)