Significance and Use 4.1 Creep tests measure the time-dependent deformation under force at a given temperature, and, by implication, the force-carrying capability of the material for limited deformations. Creep rupture tests, properly interpreted, provide a measure of the force-carrying capability of the material as a function of time and temperature. The two tests complement each other in defining the force-carrying capability of a material for a given period of time. In selecting materials and designing parts for service at elevated temperatures, the type of test data used will depend on the criteria for force-carrying capability that best defines the service usefulness of the material. 4.2 This test method may be used for material development, quality assurance, characterization, and design data generation. 4.3 High-strength, monolithic ceramic materials, generally characterized by small grain sizes (<50 μm) and bulk densities near their theoretical density, are candidates for load-bearing structural applications at elevated temperatures. These applications involve components such as turbine blades which are subjected to stress gradients and multiaxial stresses. 4.4 Data obtained for design and predictive purposes shall be obtained using any appropriate combination of test methods that provide the most relevant information for the applications being considered. It is noted here that ceramic materials tend to creep more rapidly in tension than in compression (1-3).4 This difference results in time-dependent changes in the stress distribution and the position of the neutral axis when tests are conducted in flexure. As a consequence, deconvolution of flexural creep data to obtain the constitutive equations needed for design cannot be achieved without some degree of uncertainty concerning the form of the creep equations, and the magnitude of the creep rate in tension vis-a-vis the creep rate in compression. Therefore, creep data for design and life prediction shall be obtained in both tension and compression, as well as the expected service stress state.Scope 1.1 This test method covers the determination of tensile creep strain, creep strain rate, and creep time to failure for advanced monolithic ceramics at elevated temperatures, typically between 1073 and 2073 K. A variety of test specimen geometries are included. The creep strain at a fixed temperature is evaluated from direct measurements of the gage length extension over the time of the test. The minimum creep strain rate, which may be invariant with time, is evaluated as a function of temperature and applied stress. Creep time to failure is also included in this test method. 1.2 This test method is for use with advanced ceramics that behave as macroscopically isotropic, homogeneous, continuous materials. While this test method is intended for use on monolithic ceramics, whisker- or particle-reinforced composite ceramics as well as low-volume-fraction discontinuous fiber-reinforced composite ceramics may also meet these macroscopic behavior assumptions. Continuous fiber-reinforced ceramic composites (CFCCs) do not behave as macroscopically isotropic, homogeneous, continuous materials, and application of this test method to these materials is not recommended. 1.3 The values in SI units are to be regarded as the standard (see IEEE/ASTM SI 10). The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Go to ASTM C1291 at ASTM.org

American National Standards Institute Inc.

Add your thoughts about the standard.

1375 - Demolition Materials (549) 1377 - Cartridge and Propellant Actuated Devices and Components (524) 4720 - Hose and Flexible Tubing (552) 4730 - Hose, Pipe, Tube, Lubrication, and Railing Fittings (1823) 5120 - Hand Tools, Nonedged, Nonpowered (1124) 5305 - Screws (781) 5306 - Bolts (996) 5310 - Nuts and Washers (864) 5330 - Packing and Gasket Materials (583) 5340 - Hardware, Commercial (953) 5905 - Resistor (753) 5910 - Capacitors (783) 5930 - Switches (1012) 5935 - Connectors, Electrical (4357) 5940 - Lugs, Terminals, and Terminal Strips (564) 5945 - Relays and Solenoids (733) 5950 - Coils and Transformers (856) 5960 - Electron Tubes and Associated Hardware (1630) 5961 - Semiconductor Devices and Associated Hardware (707) 6145 - Wire and Cable, Electrical (1629) 6240 - Electric Lamps (662) 6505 - Drugs and Biologicals (1343) 6515 - Medical and Surgical Instruments, Equipment, and Supplies (1907) 6520 - Dental Instruments, Equipment, and Supplies (790) 6530 - Hospital Furniture, Equipment, Utensils, and Supplies (745) 6610 - Flight Instruments (540) 6625 - Electrical and Electronic Properties Measuring and Testing Instruments (1241) 6640 - Laboratory Equipment and Supplies (1187) 6810 - Chemicals (1114) 8010 - Paints, Dopes, Varnishes, and Related Products (2046) 8030 - Preservative and Sealing Compounds (554) 8140 - Ammunition and Nuclear Ordnance Boxes, Packages and Special Containers (797) 8305 - Textile Fabrics (910) 8415 - Clothing, Special Purpose (660) 8455 - Badges and Insignia (3093) 8915 - Fruits and Vegetables (531) 9330 - Plastics Fabricated Materials (759) FACR (1647) ISDA (1776) ISDD (786) ISDF (1827) ISDN (581) MISC (1045) PACK (539) SESS (581)
Aerospace Material (225) Aircraft Air Conditioning, Heating, and Pressurizing Equipment (334) Aircraft Hydraulic, Vacuum, and De-icing System Components (263) Ammunition, 75mm through 125mm (192) Ammunition, over 30mm up to 75mm (208) Ammunition, through 30mm (349) Analytical Chemistry (180) Bombs (192) Building (414) Bulk Explosives (261) Cartridge and Propellant Actuated Devices and Components (524) Consumer Product Evaluation (267) Copper (192) Demolition Materials (549) Electrical and Magnetic Conductor (162) Electronics (153) Environmental Toxicology (187) Fire Control Computing Sights and Devices (338) Fire Control Radar Equipment, except Airborne (197) Fuzes and Primers (454) Geotechnical Engineering (217) GUN (640) Land Mines (276) Medical Device and Implant (427) Military Chemical Agents (156) Miscellaneous Aircraft Accessories and Components (231) Miscellaneous Fire Control Equipment (216) Nondestructive Testing (246) Nonferrous Metal and Nonferrous Alloy (367) Nuclear Technology (274) Optical Sighting and Ranging Equipment (451) Paint and Related Coating (456) Parachutes; Aerial Pick Up, Delivery, Recovery Systems; and Cargo Tie Down Equipment (324) Petroleum (378) Plastic Pipe (248) Pyrotechnics (175) Road and Paving (177) Rockets, Rocket Ammunition and Rocket Components (368) Rubber (166) Security System Pedestrian and Walkway Safety (157) Specialized Test and Handling Equipment, Nuclear Ordnance (150) Sports and Recreation (316) Steel (908) Torpedos and Components, Inert (258) (621)