Significance and Use 4.1 Corrosivity monitoring of test environments provides a means to monitor an integrated value of test corrosivity which cannot be evaluated from test parameters themselves, such as temperature, humidity, and gas concentration. As such the monitor value can be used for specification purposes such as test validation. Electrical resistance monitoring of conductors exposed to corrosive media is a well-established practice.3,4,5,6 4.2 The resistance method assumes uniform corrosion over the entire surface of the exposed metal conductor segment. Local corrosion such as pitting, crevice, or grain boundary corrosion may provide invalid estimates of test corrosivity. Marked changes in slope of the curve of electrical resistance ratio versus time may indicate undesired processes which can be due to deficiencies in the test atmosphere or in the monitor itself. 4.3 Because of limitations of the diffusion process within the corrosion product formed on the metal conductor segment of the RM probe when passivating corrosion films are formed, resistance monitoring may not be useful for test chamber monitoring purposes for very long test exposures. Chamber monitoring is dependent on detecting changes in the rate of corrosion of the RM as an indicator signal that specified gas concentrations must be reverified. However, low corrosion rates limit the absolute value of the rate of change of corrosion rate with change of test conditions; for parabolic film growth processes, the growth rate decreases with time limiting the sensitivity of the RM at extended test times. 4.4 Since corrosion rate can be a complex function of test parameters in MFG tests with any given metal primarily responsive to a subset of the gases in the MFG environment, more than one type metal resistance probe is required in order to assist in maintenance of relative gas concentrations. For such test specifications, values of resistance ratios must be referred to ratios obtained under known test conditions as supplied by the test specifier. Information relating to the sensitivity of various metals to various corrodants has been published.7,8 4.5 RM probes can be useful from 1 % of thickness consumed upward to 50 % of thickness consumed by the corrosion film growth. Conductor thicknesses between 25 nm and 0.2 mm have been reported and common sizes are available commercially.Scope 1.1 This test method provides a means for monitoring corrosivity of environmental tests that involve exposure to corrosive gases. 1.2 This test method uses a resistance monitor (RM) probe fabricated from a chosen metal conductor, with one conductor segment uncovered to permit exposure of the chosen metal conductor to the corrosive gas mixture and the second conductor segment covered to protect the metal conductor of this segment from direct attack by the corrosive gas mixture. The covered conductor segment provides a reference for evaluating changes in the uncovered segment. The ratio of the resistance of the exposed segment to that of the covered segment provides a measure of the amount of metal conductor that has reacted with the corrosive gas test environment to form poorly conducting corrosion product, thus providing a measure of test corrosivity. 1.3 Resistance monitoring is applicable to a broad range of test conditions by selection of the appropriate metal conductor and initial metal thickness. 1.4 This method is similar in intent to Test Methods B808. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

American National Standards Institute Inc.

Go to ASTM B826 at ASTM.org

Add your thoughts about the standard.

1375 - Demolition Materials (549) 1377 - Cartridge and Propellant Actuated Devices and Components (524) 4720 - Hose and Flexible Tubing (552) 4730 - Hose, Pipe, Tube, Lubrication, and Railing Fittings (1823) 5120 - Hand Tools, Nonedged, Nonpowered (1124) 5305 - Screws (781) 5306 - Bolts (996) 5310 - Nuts and Washers (864) 5330 - Packing and Gasket Materials (583) 5340 - Hardware, Commercial (953) 5905 - Resistor (753) 5910 - Capacitors (783) 5930 - Switches (1012) 5935 - Connectors, Electrical (4357) 5940 - Lugs, Terminals, and Terminal Strips (564) 5945 - Relays and Solenoids (733) 5950 - Coils and Transformers (856) 5960 - Electron Tubes and Associated Hardware (1630) 5961 - Semiconductor Devices and Associated Hardware (707) 6145 - Wire and Cable, Electrical (1629) 6240 - Electric Lamps (662) 6505 - Drugs and Biologicals (1343) 6515 - Medical and Surgical Instruments, Equipment, and Supplies (1907) 6520 - Dental Instruments, Equipment, and Supplies (790) 6530 - Hospital Furniture, Equipment, Utensils, and Supplies (745) 6610 - Flight Instruments (540) 6625 - Electrical and Electronic Properties Measuring and Testing Instruments (1241) 6640 - Laboratory Equipment and Supplies (1187) 6810 - Chemicals (1114) 8010 - Paints, Dopes, Varnishes, and Related Products (2046) 8030 - Preservative and Sealing Compounds (554) 8140 - Ammunition and Nuclear Ordnance Boxes, Packages and Special Containers (797) 8305 - Textile Fabrics (910) 8415 - Clothing, Special Purpose (660) 8455 - Badges and Insignia (3093) 8915 - Fruits and Vegetables (531) 9330 - Plastics Fabricated Materials (759) FACR (1647) ISDA (1776) ISDD (786) ISDF (1827) ISDN (581) MISC (1045) PACK (539) SESS (581)
Aerospace Material (225) Aircraft Air Conditioning, Heating, and Pressurizing Equipment (334) Aircraft Hydraulic, Vacuum, and De-icing System Components (263) Ammunition, 75mm through 125mm (192) Ammunition, over 30mm up to 75mm (208) Ammunition, through 30mm (349) Analytical Chemistry (180) Bombs (192) Building (414) Bulk Explosives (261) Cartridge and Propellant Actuated Devices and Components (524) Consumer Product Evaluation (267) Copper (192) Demolition Materials (549) Electrical and Magnetic Conductor (162) Electronics (153) Environmental Toxicology (187) Fire Control Computing Sights and Devices (338) Fire Control Radar Equipment, except Airborne (197) Fuzes and Primers (454) Geotechnical Engineering (217) GUN (640) Land Mines (276) Medical Device and Implant (427) Military Chemical Agents (156) Miscellaneous Aircraft Accessories and Components (231) Miscellaneous Fire Control Equipment (216) Nondestructive Testing (246) Nonferrous Metal and Nonferrous Alloy (367) Nuclear Technology (274) Optical Sighting and Ranging Equipment (451) Paint and Related Coating (456) Parachutes; Aerial Pick Up, Delivery, Recovery Systems; and Cargo Tie Down Equipment (324) Petroleum (378) Plastic Pipe (248) Pyrotechnics (175) Road and Paving (177) Rockets, Rocket Ammunition and Rocket Components (368) Rubber (166) Security System Pedestrian and Walkway Safety (157) Specialized Test and Handling Equipment, Nuclear Ordnance (150) Sports and Recreation (316) Steel (908) Torpedos and Components, Inert (258) (621)